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Abstract

Background and Aims: Hepatic metastasis (HM) and
lymph node metastasis in pancreatic ductal adenocarcinoma
(PDAC) are associated with worse overall survival, largely
due to the immunosuppressive microenvironment. However,
the key immunosuppressive cells within this microenviron-
ment remain inadequately defined. This study aimed to iden-
tify the cells contributing to HM and lymph node metastasis
in PDAC and to investigate their regulatory mechanisms.
Methods: Single-cell RNA sequencing was used to profile
the tumor microenvironment in HM, lymph node-negative,
and lymph node-positive (LNP) PDAC tissues. Bioinformatic
analyses revealed subtypes of immunosuppressive myeloid-
derived suppressor cells (MDSCs). Immunofluorescence and
flow cytometry were performed to detect the distribution
and proportion of interleukin-1 receptor antagonist (ILIRA*)
MDSCs. The immunosuppressive and pro-tumorigenic func-
tions of ILLRA* MDSCs were analyzed using enzyme-linked
immunosorbent assay, quantitative reverse transcription
polymerase chain reaction, Western blotting, and Transwell
assays. Patient-derived xenograft mouse models were em-
ployed to validate the role of ILIRA* MDSCs in vivo. Re-
sults: Polymorphonuclear-MDSCs were found to be recruited
to metastatic PDAC tissues. Among these, ILIRA* MDSCs
were enriched in HM/LNP tissues and correlated with poorer
prognosis. ILLRA* MDSCs promoted M2 macrophage polari-
zation and suppressed the activity of natural killer cells and
cytotoxic T cells. Furthermore, ILIRA* MDSCs accelerated
PDAC migration and progression by upregulating epithelial-
mesenchymal transition-related proteins in both in vitro and
in vivo models. Conclusions: IL1RA* MDSCs represent a
key immunosuppressive and pro-tumorigenic subtype in HM/
LNP PDAC, providing a solid theoretical basis for prognostic
prediction and the development of immunotherapeutic strat-
egies targeting these cells in HM/LNP PDAC.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most
lethal malignancies, with a five-year overall survival rate of
only 13%, largely attributable to its propensity for early me-
tastasis.! Approximately 57% of PDAC patients present with
metastatic disease at diagnosis.2 Among them, hepatic me-
tastasis (HM) and lymph node metastasis (LNM) occur fre-
quently and predict poorer prognosis.34 Although the poor
prognosis of PDAC has often been attributed to HM and LNM,
which contribute to extensive dissemination into peripheral
tissues and distant metastasis,> other potential mechanisms
remain unexplored. Therefore, investigating the underlying
mechanisms of HM and LNM in PDAC and identifying strat-
egies to inhibit them may highlight novel therapeutic ap-
proaches and ultimately improve the five-year overall sur-
vival rate.

The occurrence of HM and LNM is associated with an im-
munosuppressive tumor microenvironment (TME) and acti-
vation of epithelial-mesenchymal transition (EMT) in tumor
cells.® PDAC is characterized by its immunosuppressive TME,
which is strongly associated with HM and LNM.7.8 Multiple
immune cells, including myeloid-derived suppressor cells
(MDSCs), M2 macrophages, dendritic cells, regulatory T
cells, and group 3 innate lymphoid cells, have been iden-
tified as contributors to the immunosuppressive TME that
promotes HM and LNM in PDAC.%-11 MDSCs are a hetero-
geneous population of myeloid cells that strongly inhibit the
anticancer functions of effector immune cells.12 Recent stud-
ies have revealed distinct immunosuppressive functions of
various MDSC subtypes in remodeling the TME. For instance,
polymorphonuclear MDSCs (PMN-MDSCs) suppress tumor-
specific immune responses by regulating the endoplasmic
reticulum stress response in mice with lung cancer and lym-
phoma, '3 while monocytic MDSCs (M-MDSCs) upregulate se-
creted phosphoprotein 1 to compensate for CD274 function,

Copyright: © 2025 The Author(s). This article has been published under the terms of Creative Commons Attribution-Noncommercial 4.0 International License
(CC BY-NC 4.0), which permits noncommercial unrestricted use, distribution, and reproduction in any medium, provided that the following statement is provided.
“This article has been published in Journal of Clinical and Translational Hepatology at https://doi.org/10.14218/1JCTH.2025.00416 and can also be viewed
on the Journal’s website at http://www.jcthnet.com”.


http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://crossmark.crossref.org/dialog/?doi=10.14218/JCTH.2025.00416&domain=pdf&date_stamp=2025-09-18
https://doi.org/10.14218/JCTH.2025.00416
https://orcid.org/0000-0002-2515-3076
https://orcid.org/0000-0001-8451-4516
https://orcid.org/0000-0001-8451-4516
mailto:wei_feng@jlu.edu.cn
https://orcid.org/0000-0002-2515-3076
mailto:hjli2012@jlu.edu.cn

thereby promoting immune escape in PDAC.14 Despite grow-
ing insights into the functions of MDSCs in various cancer
types, their relationship with HM and LNM in PDAC remains
poorly explored.

The interleukin (IL)-1 subfamily consists of IL-1a, IL-1B,
IL-33, and IL-1 receptor antagonist (IL1RA).1> Within this
subfamily, IL1RA, encoded by IL1RN, serves as a competitive
inhibitor of IL-1 ligands, counteracting IL-1 signaling to mod-
ulate immune responses.16 In the context of its immunosup-
pressive role in the TME, IL1RA has been shown to interact
with the cholinergic muscarinic 4 receptor, promoting an M2-
like phenotype in monocytes and enhancing tumor aggres-
siveness in prostate cancer.!” Beyond immune regulation,
IL1RA can also reverse the suppressive effects of methionine
deprivation, thereby promoting glioma cell proliferation.8 Al-
though emerging evidence suggests that IL1RA contributes
to tumor progression, the specific roles of ILIRA* MDSCs in
HM and LNM of PDAC remain poorly defined.

EMT is a process through which epithelial cells lose their
characteristic features and acquire mesenchymal traits, ena-
bling tumor cells to invade adjacent tissues, including lymph
nodes.19 EMT-related proteins such as Snail, N-cadherin, and
E-cadherin have been correlated with HM in PDAC20 and with
LNM in oral squamous cell carcinoma and cervical cancer.21,22
The EMT pathway is widely recognized as being activated
early during metastasis or in response to oxidative stress.23
Importantly, immune cells such as macrophages have been
shown to drive EMT through the secretion of cytokines like
IL-1B and transforming growth factor (TGF)-B in breast and
lung cancers.2425 However, whether EMT can be driven by
MDSCs remains unclear.

To identify immune-cell subsets that drive HM and LNM
in PDAC, we performed single-cell RNA sequencing (scRNA-
seq) and discovered a novel subtype of ILIRA* MDSCs aber-
rantly enriched in HM and lymph node-positive (LNP) PDAC.
ILIRA* MDSCs exert potent immunosuppressive effects on
macrophages, NK cells, and T cells by inhibiting the IL-1
pathway. Moreover, ILIRA* MDSCs promote PDAC cell mi-
gration by activating the EMT pathway in a VEGFA-dependent
manner. Treatment with axitinib, a VEGFA-targeted drug, ef-
fectively abolished the influence of ILLRA* MDSCs on PDAC
cells. These findings reveal a novel mechanism whereby IL-
1RA* MDSCs promote HM and LNM by activating EMT and
remodeling the immunosuppressive microenvironment, sug-
gesting that targeting ILIRA* MDSCs may represent a prom-
ising therapeutic strategy in PDAC.

Methods

Patient information and sample acquisition

Fresh tissue specimens were collected from a cohort of 24
PDAC patients at the First Affiliated Hospital of Jilin University
(Changchun, China) between 2023 and 2024. For resectable
primary pancreatic cancer, all patients had non-metastatic
PDAC, had not received prior preoperative treatment, and
were confirmed by pathological assessment. Patients with
other malignancies, comorbidities, or those who had received
neoadjuvant therapy were excluded from the study. Six pa-
tients underwent scRNA-seq; three of them were pathologi-
cally diagnosed with LNM. In addition, one hepatic metastasis
sample was collected for scRNA-seq. One PDAC tumor tissue
specimen was obtained from a 63-year-old woman who un-
derwent radical resection for the establishment of patient-
derived xenograft (PDX) models. Tissue slides from another
cohort of 10 PDAC patients were obtained from the Depart-
ment of Pathology for multiplex immunofluorescence assays.
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Blood samples from three healthy donors were collected for
in vitro immune functional assays. All participants were in-
formed about the use of their samples for experimental stud-
ies and PDX model establishment. This study was approved
by the Ethics Committee of the First Affiliated Hospital of Jilin
University (Approval No. 2019180) and conducted in accord-
ance with recognized ethical guidelines.

Tissue dissociation and single-cell suspension prepa-
ration

For scRNA-seq, PDAC and HM tissues were preserved in GEX-
SCOPE Tissue Preservation Solution (Singleron Biotechnolo-
gies, Nanjing, China) immediately after surgery and trans-
ported to the Singleron laboratory on ice packs within 48 h.
The specimens were washed with Hank’s balanced salt solu-
tion (HBSS; Gibco, Grand Island, NY, USA) and cut into 1-2
mm pieces. Tissue fragments were digested with GEXSCOPE
Tissue Dissociation Solution (Singleron Biotechnologies) at
37°C for 15 m with continuous agitation. Once cell counts ex-
ceeded 20,000, the resulting suspension was filtered through
40-pm sterile strainers (Falcon, Marlboro, NY, USA) and cen-
trifuged at 300 x g for 5 m (Eppendorf, Hamburg, Germany).
Pellets were resuspended in 1 mL phosphate-buffered saline
(PBS; Hyclone, Logan, UT, USA), and RBC lysis buffer (Roch-
ester, MI, USA) was added to remove red blood cells. The
mixture was centrifuged at 500 x g for 5 m at 15-25°C and
resuspended in PBS (Hyclone). The final cell concentration
was adjusted to 1 x 105 cells/mL, and downstream process-
ing proceeded once cell viability exceeded 80%.

ScRNA-seq

scRNA-seq was performed as previously described.26 Single-
cell suspensions at 1 x 105 cells/mL were loaded onto mi-
crofluidic devices, and scRNA-seq libraries were prepared
using the GEXSCOPE Single-Cell RNA Library Kit (Singleron
Biotechnologies), following the manufacturer’s protocol. Li-
braries were diluted to 4 nM, pooled, and sequenced on an
Illumina HiSeq X platform with 150 bp paired-end reads. Raw
reads were processed using fastQC and fastp to remove low-
quality reads, while poly-A tails and adaptor sequences were
trimmed using cutadapt. After quality control, reads were
aligned to the GRCh38 reference genome (Ensembl version
92 annotation) using STAR. Gene and UMI counts were gen-
erated using featureCounts, and expression matrices were
constructed for downstream analyses.

ScRNA-seq data integration and quality control

The scRNA-seq data from the study cohort (n = 7) were in-
tegrated with five publicly available datasets: CRA001600,
GSE197177, GSE229413, GSE242230/syn5241395, and
OEP003254. Cells with <200 or >5,000 detected genes, or
with >10% mitochondrial reads, were excluded. The Seur-
at package was used for normalization and scaling of the
expression matrix. Principal component analysis was per-
formed on the top 2000 highly variable genes for dimension-
ality reduction. To correct for batch effects across samples
and datasets, the Harmony package was applied.

Unsupervised clustering, marker identification, and
cell type annotation

Unsupervised clustering was performed using a graph-based
approach with the top 30 principal components and a reso-
lution of 0.8. Clusters were visualized using Uniform Mani-
fold Approximation and Projection (UMAP) and t-distributed
Stochastic Neighbor Embedding (tSNE). Clusters were an-
notated based on canonical marker expression to identify cell
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types. For myeloid cell subsets, the ‘FindAlIMarkers’ function
in Seurat was used to identify the top five most highly ex-
pressed genes per subset. Myeloid cells with low HLA-DR ex-
pression were defined as MDSCs.2”

Pathway analysis and single-cell trajectories of
neutrophil-derived MDSCs

Differentially expressed genes (DEGs) in neutrophil-derived
MDSCs were identified using the ‘FindAllMarkers’ function in
Seurat (min.pct = 0.25, logfc.threshold = 0.25). Gene Ontol-
ogy enrichment analysis was performed with the clusterPro-
filer R package. Pseudotime analysis of neutrophil-derived
MDSC developmental trajectories was conducted using the
Monocle2 R package with default parameters, as recom-
mended.

Cell-cell interaction analysis

Cell-cell interactions among TME cell types were predicted
using CellPhoneDB based on the normalized expression ma-
trix generated by Seurat.

Multiplex immunofluorescence staining

Formalin-fixed, paraffin-embedded tumor slides from 10
PDAC patients (five lymph node-negative (LNN) and five
LNP) were obtained from the Department of Pathology at the
First Hospital of Jilin University. Primary antibodies included
CD11b (Abcam, Cambridge, UK), CD68 (Proteintech, Wuhan,
China), MPO (Abcam), IL1RA (Proteintech), and VEGFA (Pro-
teintech). Antibody concentrations are listed in Supplemen-
tary Table 1. Secondary horseradish peroxidase-conjugated
antibodies were applied, and nuclei were counterstained with
DAPI (4’,6-diamidino-2-phenylindole). Slides were imaged
using a Nikon DS-U3 microscope (Nikon, Tokyo, Japan; 10x
maghnification).

Cell culture

Human PDAC cell lines PANC-1 and AsPC-1 were purchased
from Fenghui Biotechnology Co., Ltd. (Changsha, China) for
Transwell and Western blotting assays. THP-1 and K562 cells
were obtained from the Cell Bank of Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences (Shang-
hai, China). AsPC-1 and K562 were cultured in Roswell Park
Memorial Institute (hereinafter referred to as RPMI)-1640
medium (Corning, NY, USA), while PANC-1 was cultured in
Dulbecco’s modified Eagle’s medium (Corning) at 37°C in a
humidified incubator with 5% CO,. All media were supple-
mented with 10% fetal bovine serum (Gibco) and 1% penicil-
lin/streptomycin (100 pg/mL; Gibco). All cell lines were au-
thenticated by short tandem repeat profiling and confirmed
to be mycoplasma-free using the MycoAlert™ Mycoplasma
Detection Kit (Lonza, Basel, Switzerland). None of the cell
lines used is listed in the database of commonly misidentified
cell lines maintained by the International Cell Line Authenti-
cation Committee (ICLAC).

Flow cytometry analysis of PDAC tissues

Tumor-infiltrating immune cells were isolated from PDAC tis-
sues by mincing tumors into 1-2 mm fragments, followed
by enzymatic digestion with 200 U/mL collagenase type IV
(Gibco) and 200 pg/mL DNase I (Solarbio, Beijing, China) at
37°C with agitation in a water bath for 2 h. Dissociated cells
were filtered through a 70-um strainer (Merck Millipore, Burl-
ington, MA, USA) and centrifuged at 300 x g for 7 m. Cells
were washed, resuspended at 1 x 106 cells/50 pL in FACS
buffer, and stained with antibody panels for 30 min at 4°C.
Panel 1: anti-HLA-DR FITC (BioLegend, CA, USA), anti-

CD11b PE (BioLegend), anti-CD33 APC (BioLegend), anti-
CD14 V450 (BD Biosciences, CA, USA), anti-CD66b PE-Cy7
(BioLegend), and anti-CD45 APC/Cy7 (BioLegend).

Panel 2: anti-HLA-DR BV421 (BioLegend), anti-CD11b PE
(BioLegend), anti-CD33 APC (BioLegend), anti-CD14 PerCP
(BioLegend), anti-CD66b PE-Cy7 (BiolLegend), and anti-
CD45 APC/Cy7 (BioLegend).

For intracellular staining, anti-IL1RA FITC (eBioscience™,
San Diego, CA, USA) was used. Cells were fixed and permea-
bilized using the BD Cytofix/Cytoperm™ Fixation/Permeabili-
zation Kit (BD Biosciences, San Diego, CA, USA) following the
manufacturer’s instructions.

Samples were analyzed using a BD Fortessa flow cytom-
eter (BD Biosciences). For Panel 1, 7-AAD (BioLegend) was
added to exclude dead cells. Data were analyzed with FlowJo
software (Version 10.8.1; TreeStar, Ashland, OR, USA). De-
tailed antibody information is presented in Supplementary
Table 2.

Cell isolation and flow cytometry sorting

Peripheral blood samples were collected from three healthy
donors at the First Hospital of Jilin University. Peripheral
blood mononuclear cells (PBMCs) were isolated using Fi-
coll density gradient centrifugation (Lymphoprep; Stemcell,
BC, Canada). PBMCs were washed, resuspended at 1 x 108
cells/50 pL in FACS buffer, and stained with anti-CD3 PerCP
(BioLegend) and anti-CD56 FITC (BioLegend) for 30 m at
4°C. CD3* T cells and CD3-CD56* NK cells were sorted using
a BD Influx flow cytometer (BD Biosciences) for subsequent
in vitro immune assays.

For tumor-infiltrating immune cells, isolated cells were
stained with anti-HLA-DR BV421 (BioLegend), anti-CD11b PE
(BioLegend), anti-CD66b PE-Cy7 (BioLegend), anti-GPR109
AF647 (BioLegend), and anti-CD182 FITC (BioLegend).

HLA-DR~/4mMCD11b*CD66b*GPR109+CD182~/dm  MDSCs
were isolated using a BD Influx flow cytometer (BD Bio-
sciences). Dead cells were removed prior to sorting using the
Dead Cell Removal Kit (Miltenyi Biotec, Bergisch Gladbach,
Germany) according to the manufacturer’s protocol. To pre-
pare conditioned medium (CM), GPR109+CD182~/dim MDSCs
were cultured for 48 h. The supernatant was filtered through
a 0.22-pm membrane filter (Merck Millipore) and centrifuged
at 1,000 x g for 10 m at 4°C.

RNA isolation and quantitative reverse transcription
polymerase chain reaction (qQRT-PCR)

Total RNA was extracted from NK cells, T cells, and THP-1
cell pellets using TRIzol reagent (Invitrogen, CA, USA). RNA
was reverse-transcribed into complementary DNA using a kit
from Takara (Tokyo, Japan). gqRT-PCR was performed with TB
Green Premix Ex Tag™ (Takara). Relative expression levels
were calculated using the 2-22Ct method. Primer sequences
are listed in Supplementary Table 3.

Western blotting

PANC-1 cells were cultured in CM derived from IL1RA* MD-
SCs for 48 h. Cells were lysed with RIPA buffer (Merck Mil-
lipore), and protein concentration was quantified using a BSA
protein assay kit. Equal amounts of protein were separated
by sodium dodecyl sulfate-polyamide gel electrophoresis and
transferred to polyvinylidene fluoride membranes (Merck
Millipore). Membranes were blocked with 5% skim milk and
incubated overnight at 4°C with primary antibodies. After
washing three times with TBST (10 m each), membranes
were incubated with secondary antibodies for 45 m at room
temperature. Immunoreactive bands were visualized using
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a Tanon imaging system. Antibody details and dilutions are
listed in Supplementary Table 1.

Enzyme-linked immunosorbent assay (ELISA)

NK cells, T cells, and THP-1 cells (1 x 105 each) were cul-
tured in CM derived from IL1RA* MDSCs for 48 h. Superna-
tants were collected and analyzed for cytokine production us-
ing ELISA kits according to the manufacturers’ protocols. The
ELISA kits included assays for MCP-4/CCL13 (Invitrogen),
TNF-a (Invitrogen), TGF-B1 (Invitrogen), IL-1B (Invitrogen),
IL-2 (Invitrogen), IL-10 (Invitrogen), IFN-y (Invitrogen), and
Granzyme B (GZB; Invitrogen). Detailed kit information is
provided in Supplementary Table 4.

Lactate dehydrogenase (LDH) release assay

Freshly isolated NK cells (1 x 105) from PBMCs were cultured
in IL-2-supplemented RPMI-1640 medium. ILIRA* MDSCs
were sorted from PDAC tissue samples using flow cytom-
etry. Target cells (K562 leukemia cells) were prepared at a
concentration of 1 x 105 cells/mL. NK cells, K562 cells, and
MDSCs were co-cultured in 96-well U-bottom plates at an
effector-to-target-to-MDSC (E:T:M) ratio of 10:1:1 (1 x 10°
NK cells, 1 x 10% K562 cells, and 1 x 10% MDSCs per well).
After 6 h of incubation, 150 pL of supernatant was collected
from each well after centrifugation (200 x g, 10 m), mixed
with 50 pL of LDH reaction mix (Beyotime, Shanghai, China),
incubated for 20-30 m in the dark, and measured at OD,gq,.
NK-specific cytotoxicity was calculated as:

Maximum OD - Spontaneous OD %00%.

% Cytotoxicity = -
Experimental OD —Spontaneous OD

Transwell assay

A total of 200 pL of serum-free medium containing 1 x 10°
PANC-1 or AsPC-1 cells was added to the upper chamber of
a Transwell plate (Corning). ILIRA* MDSCs were pretreated
with or without 5 nM axitinib for 48 h. Then, 600 pL of com-
plete medium containing 10% fetal bovine serum (Gibco)
was added to the lower chamber. After 24 h, cells in the
upper chamber were fixed with 4% paraformaldehyde and
stained with 1x DAPI. Cells remaining on the upper surface
of the membrane were removed with cotton swabs. Images
were captured using an Olympus IX73 microscope system
(Olympus, Tokyo, Japan).

Patient-derived xenograft (PDX) models

PDAC tumor tissue was obtained from a 63-year-old female
patient who underwent radical resection at the First Hospital
of Jilin University to establish PDX models. Fresh PDAC tissue
was cut into 3-5 mm?3 pieces and implanted into the right
flanks of six-week-old female BALB/c nude mice (F1 genera-
tion). Tumor volumes were measured twice weekly. When
tumors reached 1,000 mm3, mice were sacrificed, xenografts
harvested, and implanted into a second generation of mice
(F2 generation). Once F2 tumors reached 1,000 mm3, xeno-
grafts were surgically removed and segmented for further
animal experiments.

Xenograft models

Nine five-week-old BALB/c nude mice were purchased from
SiPeiFu Biotechnology (Beijing, China) and housed in a pos-
itive-pressure barrier facility with HEPA-filtered air. The nine
mice were randomly divided into three groups: negative con-
trol, ILIRA* MDSCs, and IL1RA* MDSCs + axitinib. Tumor
tissue was cut into 1 mm?3 blocks and implanted subcuta-
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neously into the right flank of six-week-old female BALB/c
nude mice. When tumors reached 3 mm in diameter, 5 x 104
IL1RA* MDSCs were subcutaneously injected into three mice
from the ILIRA+* MDSC group. Axitinib (Selleck Chemicals,
Houston, TX, USA) was dissolved in 0.5% carboxymethylcel-
lulose/H,0-HCI (g/v, pH 2-3) and administered orally at 30
mg/kg twice daily to the treatment group, as previously de-
scribed.?” Tumor volumes were measured twice a day. Mice
were sacrificed by cervical dislocation after six weeks, and
tumor weights and volumes were recorded post-resection.
All animal studies complied with the Institutional Animal Care
and Use Committee of Changchun Veterinary Research Insti-
tute (Approval No. 2024-11-066).

Statistical analysis

Statistical analyses were performed using GraphPad Prism
8.0 software (GraphPad Software Inc., La Jolla, CA, USA).
Kaplan—Meier survival curves and log-rank tests were used
to compare overall survival between LNN and LNP PDAC pa-
tients. Data are presented as the mean % standard deviation.
Results represent at least three independent experiments.
Statistical differences between two groups were determined
using an unpaired, two-tailed Student’s t-test. Comparisons
among multiple groups were made using one-way analysis
of variance. The Chi-square test was applied to assess differ-
ences between categorical variables. A p-value < 0.05 was
considered statistically significant and indicated as follows:
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns:
not significant.

Results

Single-cell transcriptomic atlas and cell typing in pri-
mary PDAC, lymphatic metastasis tumors, and hepat-
ic metastatic tumors

To comprehensively understand the TME in PDAC with lym-
phatic metastasis, scRNA-seq was conducted on tissues from
three LNN, three LNP PDAC patients, and one HM patient,
all confirmed by histopathology (Fig. 1A, Supplementary
Fig. 1, Supplementary Table 5). After quality control, a total
of 32,504 cells from the cohort were included in the analy-
sis. Annotation based on well-established markers classified
these cells into 12 distinct cell types: MKI67* cells, acinar
cells, ductal cells, T cells, B cells, plasma cells, macrophages/
monocytes, neutrophils, mast cells, endothelial cells, endo-
crine cells, and fibroblasts (Supplementary Fig. 2A). To en-
hance the reliability of the data, scRNA-seq from our cohort
was integrated with five publicly available datasets with intact
clinical parameters (CRA001160, GSE197177, GSE229413,
GSE242230/syn5241395, and OEP003254), expanding the
analysis to a total of 161,184 cells from 61 patients (Fig. 1B-
D, Supplementary Fig. 2B and C, Table 1, and Supplementary
Table 6). All treatment-naive PDAC samples were surgically
obtained from primary tumors, and all treatment-naive HM
samples were surgically obtained from hepatic metastatic
tissues. The UMAP plot revealed that the distribution of cell
types varied across different groups (Fig. 1E, Supplementary
Fig. 2D and E). Notably, myeloid cells exhibited significant
heterogeneity between tissue types. Neutrophils were partic-
ularly more abundant in HM and LNP PDAC tissues compared
with LNN PDAC tissues, whereas other immune cells showed
minimal differences (Fig. 1F and G, Supplementary Fig. 2F
and G). Although the DEGs in neutrophils were less abundant
than in ductal or MKI67* cells, this indicates that, despite
their lower numbers, neutrophils may play critical roles in
lymphatic metastasis (Fig. 1H). These findings demonstrate
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intensity corresponds to the relative expression of specific genes. (C) The UMAP plot displaying the merged scRNA-seq cell map, consisting of 37 cell clusters from 12
annotated cell types (n = 161,184 cells). The UMAP plot illustrates the distribution of all sequenced cells categorized by tissue origin. (D) The UMAP plot displaying the
cell map in four tissue groups. (E) The bar plot showing the cell type abundance from different groups, including five HD, 12 ADJ, 15 LNN, 25 LNP, and four HM. (F) The
bar plot displaying the cell type abundance in merged scRNA-seq, including 61 samples from six scRNA-seq datasets. (G) The bar plot showing the immune and non-
immune cell type abundance in the integrated scRNA-seq. (H) The UMAP plot illustrating the distribution of major cell types and the number of DEGs in each cell type.
NORM, normal pancreas; PDAC, pancreatic ductal adenocarcinoma; HD, healthy donor; ADJ, adjacent normal; LNN, lymph node-negative; LNP, lymph node-positive;

HM, hepatic metastasis; UMAP, uniform manifold approximation and projection.
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Table 1. Cell types and abundances in pancreatic ductal adenocarcinoma and hepatic metastases tissues detected by scRNA-seq

NORM

PDAC

Cell types HD ADJ LNN LNP HM Z? zaellllzumbers ?ftr)g%zt)age
MKI67 cell 37 48 891 1,785 512 3,273 2.03
Acinar cell 10,067 2,631 202 687 1 13,588 8.43
Ductal cell 805 10,214 13,297 14,868 2,521 41,705 25.87
T cell 1,737 105 5,270 8,936 10,163 26,211 16.26
B cell 1,521 25 983 2,681 312 5,522 3.43
Plasma cell 71 441 1,010 1,745 139 3,406 2.11
Macro/Mono 686 1,110 4,915 7,814 5,749 20,274 12.58
Neutrophil 26 14 292 6,225 1,947 8,504 5.28
Mast cell 55 231 1,118 1,018 263 2,685 1.67
Endothelial 2,425 3,592 2,939 3,178 705 12,839 7.97
Endocrine 67 794 197 296 12 1,366 0.85
Fibroblast 1,772 1,709 6,287 11,450 593 21,811 13.53
Total 19,269 20,914 37,401 60,683 22,917 161,184 100

NORM, normal pancreas; PDAC, pancreatic ductal adenocarcinoma; LNN, lymph node-negative; LNP, lymph node-positive; HM, hepatic metastasis.

that neutrophils are the most differentially infiltrated cell
type in PDAC and may play a central role in regulating LNM.

HM and LNP PDAC tissues show increased MDSC
recruitment

To investigate whether MDSCs participate in regulating
PDAC hepatic and lymphatic metastasis, the distribution of
myeloid-derived cells in the cohort was analyzed alongside
publicly available datasets. Seven distinct MDSC clusters
were annotated based on DEGs and compared with other
myeloid cell populations using the reported HLA-DR~/dim cri-
teria (Fig. 2A). tSNE visualization showed the distribution of
MDSCs across PDAC tissues and external datasets (Fig. 2B).
In HM and LNP PDAC tissues, MDSCs were predominantly de-
rived from monocytes/macrophages and neutrophils. These
were categorized as monocytic MDSCs (M-MDSCs, marked
by HLA-DR~/4mMCD11b+*CD33*CD14+CD66b") and PMN-MD-
SCs (marked by HLA-DR-/dmCD11b*CD33*CD14-CD66b™),
respectively. Both MDSC types exert immunosuppressive
functions in the TME. Multiplex immunofluorescence stain-
ing further revealed the spatial distribution of these subsets,
showing that PMN-MDSC infiltration positively correlated with
lymphatic metastasis, whereas M-MDSCs did not demon-
strate a similar association (Fig. 2C). Flow cytometry analysis
confirmed an increased presence of MDSCs and PMN-MDSCs
in LNP PDAC tissues, while M-MDSCs and early-stage MD-
SCs showed no difference between LNN and LNP tissues (Fig.
2D and Supplementary Fig. 3). Single-cell sequencing re-
vealed that neutrophil-derived CXCR2*, IFIT2*, IL1IRN*, and
CXCR4+ MDSCs were significantly elevated in HM and LNP
PDAC tissues compared with monocyte-derived MDSCs (Fig.
2E), suggesting that these neutrophil-derived subtypes may
play a primary role in liver and lymphatic metastasis. The
Gene Ontology analysis of the four neutrophil-derived MDSC
clusters indicated that only ILIRN* and CXCR2* MDSCs were
involved in immune suppression and leukocyte regulation
(Fig. 2F). CXCR2+ MDSCs were excluded from further analy-
sis due to extensive prior studies. These findings highlight
that MDSCs, particularly neutrophil-derived PMN-MDSCs, are
increasingly recruited in HM and LNP PDAC tissues. Among
them, ILIRN* MDSCs may represent the main immunosup-

940

pressive subtype contributing to hepatic and lymphatic me-
tastasis.

IL1RN* MDSCs are increased in HM and LNP PDAC
and correlate with worse survival outcomes

Given the potential immunosuppressive role of ILIRN*
MDSCs, we examined whether these cells were elevated
in HM and LNP PDAC and associated with poor prognosis.
tSNE visualization confirmed the presence of IL1RN+t MDSCs
across all scRNA-seq datasets (Fig. 3A). The top five DEGs
of ILIRN+* MDSCs were displayed to highlight their molec-
ular distinctions (Fig. 3B). IL1RA, encoded by IL1IRN, was
employed to stain for PMN-MDSCs (HLA-DR~/4mCD11b*CD
33*CD14-CD66b*IL1RA*) and analyzed by flow cytometry
and immunofluorescence staining in LNP PDAC tissues (Fig.
3C-E). Monocle2 was used to examine the developmen-
tal trajectory of ILIRN* MDSCs in the TME, revealing that
CXCR4+ MDSCs were at the trajectory’s initiation point, while
IL1RN* MDSCs were at the terminal stage (Fig. 3F). Along
this trajectory, genes associated with immune suppression
and dysfunction were upregulated, indicating progressive im-
munosuppression in HM and LNP PDAC (Fig. 3G). Among 16
PDAC patients, high and low IL1RA MDSC groups (n = 8 per
group) were defined using a median cut-off of 2.46% of all
CD45* cells, as determined by flow cytometry. Pathological
parameters, including age, gender, differentiation, peripan-
creatic lymph node involvement, and neural invasion, were
analyzed (Supplementary Table 7). ILLRA* MDSCs were cor-
related only with tumor size and peripancreatic lymph node
invasion. Kaplan-Meier survival analysis indicated that higher
IL1IRA* MDSC proportions were associated with poorer prog-
nosis (Fig. 3H). Overall, these findings suggest that ILIRN*
MDSCs are elevated in HM and LNP PDAC and are linked to
adverse survival outcomes.

IL1RN* MDSCs contribute to the establishment of an
immunosuppressive microenvironment in PDAC
Given the increased presence of ILIRN* MDSCs in the LNP

PDAC microenvironment, it was hypothesized that these
cells may suppress antitumor immune responses by inter-
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Fig. 2. Lymph node-positive PDAC tissues show increased MDSC recruitment. (A) Dot plot showing representative marker genes across myeloid cell clusters.
Dot size is proportional to the fraction of cells expressing these genes. Color intensity corresponds to the relative expression of specific genes. (B) tSNE plot showing
major MDSC subtypes identified by single-cell RNA sequencing of PDAC tissues from integrated scRNA-seq. (C) Representative images of staining using antibodies
against MDSC markers. Scale bar = 100 pm. (D) Flow cytometry analysis of MDSCs obtained from 16 PDAC tissues, including eight LNN and eight LNP. (E) Bar plot
showing MDSC abundance in samples from LNN, LNP, and HM groups. (F) GO_BP analysis of enriched processes in four subtypes of neutrophil-derived MDSCs. Data
are presented as mean £ SD in (D). Statistical differences were assessed using a two-tailed Student’s t-test. *p < 0.05. LNN, lymph node-negative; LNP, lymph node-
positive; HM, hepatic metastasis; PDAC, pancreatic ductal adenocarcinoma; MDSCs, myeloid-derived suppressor cells.
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Fig. 3. ILIRA* MDSCs increase in LNP PDAC and correlate with worse survival outcomes. (A) tSNE plot showing the four neutrophil-derived MDSC subtypes.
(B) The top five expressed genes of ILIRN* MDSCs in the four neutrophil-derived MDSC subsets. (C, D) Representative flow cytometry data and quantification graphs
showing the proportion of IL1IRA* MDSCs in LNN and LNP PDAC tissues. (E) Representative images of immunofluorescence staining of ILLRA* MDSCs in LNN and LNP
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in gene expression along pseudotime. (H) Prognostic analysis of PDAC patients with low or high ILLRA* MDSC recruitment (stratified by the median ILIRA* MDSC
proportion in all samples). Kaplan—Meier survival plots of 16 patients are shown. Data are presented as mean + SD in (D). Statistical differences were assessed using a
two-tailed Student’s t-test. LNN, lymph node-negative; LNP, lymph node-positive; PDAC, pancreatic ductal adenocarcinoma; MDSCs, myeloid-derived suppressor cells.
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acting with other immune cell types. To test this hypothesis,
cell-cell interaction analysis was performed to visualize in-
tercellular interactions. ILIRN* MDSCs were found to inter-
act with multiple immune cell types in both LNN and LNP
PDAC tissues (Fig. 4A). To further investigate the functional
role of ILIRN* MDSCs, these cells were sorted for coculture
experiments. Due to the intracellular localization of IL1RA,
the sorting strategy was adjusted to isolate cells expressing
the membrane protein HCAR2*+ and CXCR2-/dm as a surro-
gate for ILIRN* MDSCs (Fig. 4B, Supplementary Fig. 4A).
gRT-PCR confirmed that the sorted cells highly expressed
ILIRN (Supplementary Fig. 4B). NK cells and T cells were
isolated from human peripheral blood via flow cytometry
and cocultured with CM from IL1RN* MDSCs for 48 h (Sup-
plementary Fig. 4C). The results revealed that ILIRN* MD-
SCs directly inhibited NK cell effector functions via the IL-1B
pathway. This inhibition was evidenced by a significant re-
duction in the mRNA expression levels of IFN-y, LAMP1, and
NCR3 (gRT-PCR), diminished lysosomal activity in target cells
(LDH assay), and decreased secretion of IFN-y, TNF-a, and
granzyme B (ELISA). Notably, this suppression was revers-
ible upon IL-1B stimulation, which restored NK cell activation
markers above baseline levels. In transwell experiments, NK
cell cytotoxic functions were inhibited even without direct co-
culture with IL1RN* MDSCs, indicating that cell-cell contact
was not required for this effect. Furthermore, IL-1 receptor
blockade (raleukin, 50 ng/mL, MedChemExpress, Monmouth
Junction, NJ, USA) in ILIRN"W MDSCs enhanced immunosup-
pressive activity, highlighting the pivotal role of IL-1 signaling
in MDSC-mediated regulation of NK cells (Fig. 4B-D). Collec-
tively, these results demonstrate that IL1RN* MDSCs inhibit
NK cell cytotoxic functions via IL-1 secretion rather than di-
rect contact. For T cell functions, gqRT-PCR and ELISA assays
were performed to measure IL-2 and IFN-y (T cell activation)
and IL-10 and TGF-B (T cell exhaustion) in cell lysates and
supernatants, respectively (Fig. 4E and F). These assays re-
vealed that IL1RNMgh MDSCs inhibited T cell activation and
promoted exhaustion through the IL-1 pathway compared
with IL1RN'*W MDSCs. For macrophage polarization, THP-1
cells were treated with PMA (100 ng/mL) for 48 h and subse-
quently exposed to CM from MDSCs. The mRNA and protein
levels of IL-1B, TNF-a, IL-10, and CCL13 were measured by
gRT-PCR and ELISA, respectively (Fig. 4G and H). IL1RNhigh
MDSCs promoted polarization toward M2 macrophages while
suppressing M1 polarization. IL-1B treatment inhibited the
effect of ILIRNNSh MDSCs, whereas IL-1 receptor inhibition
promoted M2 polarization. Collectively, these data suggest
that ILIRN* MDSCs contribute to remodeling an immuno-
suppressive microenvironment in PDAC via the IL-1 pathway.

IL1IRN* MDSCs promote PDAC progression in vitro
and in vivo

MDSCs are known not only to modulate immune cells in the
TME but also to promote tumor progression by directly ac-
tivating EMT and conferring stem-cell-like properties to tu-
mor cells.28:29 Therefore, the potential role of ILIRN* MD-
SCs in PDAC progression was investigated. Among the top
five most highly expressed genes in IL1RN* MDSCs in LNP
PDAC tissues, VEGFA was identified as a prominent mol-
ecule. Given its role in promoting lymphatic metastasis,
the migration ability of PDAC cells was evaluated after co-
culture with ILIRN* MDSC-CM, with or without the VEGFR
inhibitor axitinib (Fig. 5A). Transwell assays demonstrated
that IL1RN* MDSCs enhanced PDAC cell migration, whereas
axitinib reversed this effect (Fig. 5B). Western blotting and
grayscale analysis quantified the expression of EMT mark-
ers (E-cadherin, N-cadherin, Claudin, and ZO-1) in PANC-1

cells treated with ILIRN* MDSC-CM with or without axitinib.
The results revealed that IL1IRN* MDSC-CM promoted EMT
in PDAC cells, an effect reversed by axitinib (Fig. 5C). These
data indicate that ILIRN* MDSCs promote PDAC progression
via a VEGFA-dependent pathway. Further analysis of OCT4,
S0X2, NANOG, and KLF4 mRNA revealed that IL1IRN+ MDSCs
enhance stemness in PANC-1 cells (Fig. 5D). To investigate
tumorigenic potential in vivo, PDX models from LNP patients
were established. Xenograft mice were subcutaneously in-
jected with ILIRN* MDSCs isolated from LNP PDAC tissues
and treated with or without axitinib. Consistently, tumors in
mice receiving ILIRN* MDSCs were significantly larger, with
higher tumor weights and volumes compared with controls.
Axitinib treatment reversed this tumorigenic effect (Fig.
5E-H), as confirmed by hematoxylin and eosin staining (Fig.
5I). Overall, these data indicate that ILIRN* MDSCs promote
PDAC progression both in vitro and in vivo.

Discussion

Notably, HM and LNM pose a significant challenge in treat-
ing PDAC, as they occur frequently and are often associated
with poorer prognosis.3:30 It is well documented that HM and
LNM in PDAC are closely linked to an immunosuppressive
TME.7:20 During metastasis, disseminated orthotopic PDAC
cells migrate into blood vessels and establish lesions at dis-
tant sites, such as the liver and lymph nodes. However, only
a small proportion of disseminated tumor cells can survive
in these organs, as the immune system monitors aberrant
cells.3! Metastatic PDAC cells in the liver encounter a harsh
and strange microenvironment, different from the optimal
orthotopic pancreatic TME. Consequently, most metastatic
cells remain dormant when repelled by local hepatic cells.32
To survive, metastatic PDAC cells actively remodel the liver
microenvironment to support their persistence.8 Over the
past few decades, advancements in immunotherapy, particu-
larly strategies aimed at remodeling the immunosuppressive
TME in metastatic lesions, have revolutionized cancer treat-
ment.33 However, for PDAC patients, the application of im-
munotherapy remains limited.” One key reason for the lim-
ited efficacy of immunotherapy in PDAC is the incomplete
characterization of immunosuppressive cell subtypes within
the TME.

MDSCs, as a dominant cell population in tumor stroma,
have emerged as a potential target for PDAC immunother-
apy. These cells traffic into the PDAC microenvironment,
where they suppress immune responses and inhibit the infil-
tration of cytotoxic immune cells.3435 Interestingly, although
the TME of PDAC HM lesions and hepatocellular carcinoma
(HCC) arises from different processes, TME remodeling in
PDAC versus chronic fibrosis in HCC, the MDSCs present in
both TMEs are relatively similar. For instance, both HCC and
PDAC exhibit increased MDSC recruitment, which can serve
as a prognostic biomarker.36:37 MDSCs in both cancers cre-
ate an immunosuppressive TME via the PD-L1 pathway.14:38
Previous studies demonstrated that CXCR4-modified CAR-T
cells could reduce the MDSC population and tumor volume
in tumor-bearing mice by suppressing MDSC recruitment in
PDAC.3° However, the development of CXCR4-modified CAR-
T cells is costly. Therefore, the present study focused on
identifying novel therapeutic targets on MDSCs using exist-
ing drugs.

The increased recruitment of PMN-MDSCs in liver meta-
static and LNP PDAC tissues was confirmed, correlating
with HM and LNM in PDAC. Neutrophils have recently been
identified as a primary source of PMN-MDSCs, contributing
to the formation of an immunosuppressive TME that pro-
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Fig. 4. ILIRN+ MDSCs contribute to the establishment of an immunosuppressive microenvironment in PDAC. (A) Heatmap illustrating cell-cell interaction
patterns in LNN and LNP samples. (B-D) IL1RN"gh MDSCs suppress NK cell activation and cytotoxicity: (B) Relative mRNA expression levels of IFN-y, LAMP1, and NCR3
in NK cells under indicated co-cultures (fold change normalized to IL1RNM9" MDSC + NK co-culture group). (C) Cytotoxicity against K562 cells measured by LDH release
(%; Triton X-100 + K562 = maximum lysis control (100%); K562 alone = baseline control). (D) Concentrations (pg/mL) of GZB, IL-1B, and TNF-a in co-culture super-
natants (ELISA). (E, F) IL1RNMsh MDSCs inhibit macrophage polarization toward M2 phenotype via a non-contact mechanism: (E) Relative mRNA expression levels of
IFN-y, IL-2, IL-10, and TGF-B1 in macrophages under indicated co-cultures (fold change normalized to IL1RNNSh MDSC + macrophage co-culture). (F) Concentrations
(pg/mL) of IFN-y, IL-2, IL-10, and TGF-B in co-culture supernatants (ELISA). (G, H) IL1RNMsh MDSCs suppress T cell activation and proliferation via a non-contact
mechanism: (G) Relative mRNA expression levels of IL-13, CCL13, IL-10, and TNF-a in suppressor T cells under indicated co-cultures (fold change normalized to IL-
1RNNigh MDSC + suppressor T cell co-culture). (H) Concentrations (pg/mL) of IL-1B, CCL13, IL-10, and TNF-a in co-culture supernatants (ELISA). Data are represented
as mean = SD of three independent biological replicates. Statistical significance was determined by one-way ANOVA with Dunnett’s post-hoc test: "Sp > 0.05; *p <
0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. PDAC, pancreatic ductal adenocarcinoma; MDSCs, myeloid-derived suppressor cells; LNN, lymph node-negative;

LNP, lymph node-positive; GZB, Granzyme B.
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Fig. 5. ILIRN+* MDSCs promote PDAC progression in vitro and in vivo. (A) Schematic illustration of IL1RN* MDSC-PDAC co-culture system. (B) Transwell migration
assays in PANC-1 and ASPC-1 cells treated with normal medium (Control), IL1RA* MDSC-conditioned medium (ILIRA* MDSC CM), or ILIRA* MDSC CM + Axitinib. Scale bar
= 50 pm. (C) Western blot analysis of EMT markers (N-cadherin, E-cadherin, ZO-1, Claudin-1) in PANC-1 cells under treatments identical to (B); B-actin was detected as a
control. Grayscale was determined using Image]. (D) Relative expression of stemness-related mRNA after treatment with IL1RA* MDSC CM or ILIRA* MDSC CM + Axitinib.
(E) Representative images of subcutaneous tumors in BALB/c nude mice from the PDX model: Group 1 (Control, tumor tissue only); Group 2 (tumor tissue co-implanted
with ILIRN* MDSCs); Group 3 (tumor tissue co-implanted with IL1RN* MDSCs + Axitinib). (F) Excised tumor tissues from (E). (G, H) Tumor weights (G) and volumes (H)
from the mouse model presented as bar graphs. (I) Representative H&E staining images of mouse pancreatic tumor tissues. Scale bar = 100 pm. Data are represented
as mean = SD of three independent biological replicates in (B) and four independent replicates in (F and G). Statistical significance was determined by one-way ANOVA
with Dunnett’s post-hoc test: "p > 0.05; *p < 0.05; ***p < 0.001; ****p < 0.0001. PDAC, pancreatic ductal adenocarcinoma; MDSCs, myeloid-derived suppressor cells.
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motes necrosis and metastasis in multiple tumor types.27:40
For instance, CD11b* LY6G* Ly6C'°% and STAT3-activated
neutrophils can exert immunosuppressive functions as PMN-
MDSCs.*! In the present study, neutrophils were identified as
one of the most differentially expressed cell types in both HM
and LNP PDAC tissues. The increased neutrophil recruitment
in these tissues demonstrates that specific neutrophil sub-
types may function as PMN-MDSCs, facilitating metastasis.

Four distinct subtypes of neutrophil-derived MDSCs were
identified in HM and LNP PDAC tissues: CXCR2*, IFIT2*,
IL1IRN*, and CXCR4* MDSCs. Among them, ILIRN* MDSCs
have not been well characterized but were identified as a
significant population involved in immune suppression in the
TME and as a predictor of prognosis. ILIRA* MDSCs were
found to impair macrophage, NK cell, and T cell functions via
the IL-1 pathway. IL1RA, encoded by IL1RN, is a member of
the IL-1 cytokine family and serves as a competitive inhibitor
of IL-1 ligands.1> IL1RA plays a notable role in blocking the
IL-1 pathway and preventing overactive immune responses.
Previous studies reported that IL1RA promotes immunosup-
pression and tumor cell proliferation in prostate cancer and
glioma, establishing it as a pro-tumorigenic cytokine in the
TME.17.18 However, the role of IL1RA in HM or LNM of PDAC
has not been fully elucidated. Similarly, IL-1 is recognized
as a pro-tumoral cytokine that accelerates tumor progres-
sion by recruiting myeloid cells to establish an immunosup-
pressive environment, promoting angiogenesis, activating
endothelial cells, and skewing lymphoid cells.42 Therefore,
the function of the IL-1 pathway in the TME remains com-
plex, as both IL-1 and IL1RA have been implicated in pro-
moting tumor progression, while IL1RA directly inhibits the
IL-1 pathway. These paradoxical findings complicate the use
of IL-1-targeted immunotherapies in PDAC. Accordingly, the
roles of ILIRA* MDSCs in HM and LNP PDAC tissues were
further explored.

Although IL1-mediated chronic inflammation is a common
driver of tumor progression, IL1 can also act as a licensing
signal to activate T cells and NK cells in colon adenocarcino-
ma and neuroblastoma.4344 The results of the present study
confirmed that ILIRA* MDSCs are increasingly recruited in
HM and LNP PDAC TMEs and serve as a potent immunosup-
pressive population, inhibiting the cytotoxic functions of NK
and T cells and promoting M2 macrophage polarization via
suppression of the IL1 pathway. These findings highlight IL-
1RA* MDSC populations as potential prognostic biomarkers
for HM and LNM. Moreover, a potent and short-term regimen
targeting ILIRA* MDSCs could reactivate anti-tumor immune
responses in PDAC.

VEGFA has been characterized as a dominant driver of
angiogenesis in tumor progression, and targeting VEGFA
has emerged as a promising therapeutic strategy in multi-
ple cancers, including HCC.4> Additionally, VEGFA has been
validated to activate the EMT pathway, promoting lymphatic
metastasis in esophageal squamous cell carcinoma, indicat-
ing that VEGFA-targeted therapy may be effective in PDAC.46
However, clinical outcomes for PDAC patients receiving VEG-
FA-targeted therapies remain unsatisfactory.#” This failure is
largely attributed to the limited efficacy of VEGF inhibition
alone. Consequently, strategies combining immunotherapy
with targeted therapy have been investigated to enhance
treatment efficacy in PDAC.48

Importantly, VEGFA was identified as one of the top five
DEGs in ILIRA* MDSCs, presenting the potential to combine
immunotherapy and targeted therapy by simultaneously
inhibiting ILIRA* MDSCs. Axitinib, a well-known VEGFR in-
hibitor that blocks VEGFR1-3, was used to validate this ap-
proach. In HCC, the combination of axitinib and avelumab
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achieved a 31.8% objective response rate.*® Moreover, VEGF
antibodies have been shown to inhibit the EMT pathway in
breast cancer and HCC.>? Our results confirmed that VEGFR
inhibition with axitinib reversed the migratory capacity and
EMT changes induced by ILIRA* MDSCs in PDAC, providing
further evidence that axitinib can suppress the EMT pathway
through IL1RA* MDSCs. Since axitinib has been successfully
applied in HCC, it may represent a promising treatment for
PDAC with HM and LNM. Overall, these findings highlight the
potential of combining immunotherapy and targeted therapy
by inhibiting both ILIRA* MDSC-mediated IL1 signaling and
EMT pathways.

Collectively, our findings reveal a novel ILIRA* MDSC sub-
type that promotes hepatic and LNM in PDAC, highlighting
the prognostic and therapeutic potential of targeting these
cells to remodel the immunosuppressive TME via IL1 path-
way blockade and VEGF inhibition. However, the limited avail-
ability of liver metastasis tissues and the need for further in-
vestigation into EMT-related mechanisms remain constraints
of this study, warranting more comprehensive validation in
future research.

Conclusions

IL1RA* MDSCs have been identified as novel regulatory im-
mune cells that are significantly enriched in the HM and LNP
PDAC microenvironment and are associated with poor prog-
nosis. This study confirmed that ILIRA* MDSCs express high
levels of ILIRA and VEGFA and interact with NK cells, T cells,
and macrophages to establish an immunosuppressive micro-
environment via the IL1 pathway. Furthermore, ILLRA* MD-
SCs promote PDAC progression through the VEGF pathway in
both in vitro and in vivo models. These findings highlight the
potential of targeting ILIRA* MDSCs in the TME as a promis-
ing therapeutic strategy for PDAC.
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